| 1. COURSE DECRIPTION - GENERAL | LINFORMATION | | | | | | |--|--|---|-----------------|--|--|--| | 1.1. Course teacher | Full Professor Juraj Šiftar, PhD, | 1.6. Year of study | 1 st | | | | | 1.2. Name of the course | Mathematics with statistical analysis | 1.7. Credit value (ECTS) | 7.5 | | | | | 1.3. Associate teachers | 1 | 1.8. Type of instruction (number of hours L+E+S+e-learning) | 45+0+30 | | | | | 1.4. Study programme (undergraduate, graduate, integrated) | Integrated study of pharmacy | 1.9. Expected enrolment in the course | 130 | | | | | 1.5. Status of the course | Compulsory | 1.10. Level of use of e-learning (1, 2, 3 level), percentage of instruction in the course on line (20% maximum) | 2 nd | | | | | 2. COURSE DESCRIPTION | | | | | | | | | Introduction to basic terms, methods and applications of differential and integral calculus of functions of a real | | | | | | | | variable. Functional flow analysis and solving basic types of ordinary differential equations. Applying acquired | | | | | | | 2.4 Course chicatives | knowledge in mathematical modeling of biological, chemical and physical processes. Adopting basic terms of | | | | | | | 2.1. Course objectives | probability theory and statistics. Processing and displaying congregation data and determination of statistical | | | | | | | | properties. Describing random processes by suitable distribution. Statistical hypothesis testing and assessing | | | | | | | | the reliability of results. | | | | | | | 2.2. Enrolment requirements and required entry competences for the course | 1 | | | | | | | Course | Apply fundamental knowledge in mathematics and statistics (developing skills for problem formulation, using | | | | | | | | suitable methods for describing and analysing data, prediction of process flow by modelling) apply | | | | | | | 2.3. Learning outcomes at the level of the study programme to which the course contributes | fundamental knowledge in chemistry, biochemistry, molecular biology, physics, mathematics and statistics | | | | | | | | for laboratory diagnostics, for defining, analysing and proposing procedures related to research, production | | | | | | | | and quality assurance, as well as for disease and treatment monitoring. | | | | | | | | After completing the course, student will be able to: | | | | | | | 2.4. Expected learning outcomes at the level of the course (4-10 learning | Recognize and use basic mathematical terms and symbols; | | | | | | | outcomes) | Identify elementary functions and their essential characteristics; | | | | | | | | 3. Define key terms of mathematical analysis (convergence, continuity, derivative, integral) and interpret them | |---|---| | | using examples; | | | 4. Analyse flow and display of a function graph by methods of differential calculus; | | | 5. Solve basic types of ordinary differential equations; | | | 6. Formulate and interpret mathematical models of processes in the field of biology, chemistry and physics; | | | 7. Select a suitable probability law or type of distribution for analysis of random processes; | | | 8. Select a data set, determine its statistical features and display results; | | | 9. Conduct an appropriate statistical test and assess reliability of results. | | 2.5. Course content broken down in detail by weekly class schedule (syllabus) | LECTURES: Introduction to course content. An example of mathematical model in biology. Some basic terms and symbols (sets, the set of real numbers - R, number line, intervals in R, set operations). Some terms of mathematical logic. Definition and basic characteristics of functions. Series and their characteristics. Geometric series. Monotone and bounded series. Definition of convergence and limes. Accumulation of series. Operation with convergent series. Some sufficient conditions of convergence. Number "e" as limes of series. Row. Definition of convergence and row sum. Examples. Necessary condition of convergence. Criteria of convergence. Functions. Natural domain and image of a function. Composition. Inverse function. Graph of a function. Review of elementary functions. Polynomials. Rational functions. Exponential and logarithmic functions. Trigonometric and arcus functions. Periodicity. Limes of a function. Continuity of a function. Characteristics of continuous functions. Periodicity. Limes of a function. Problem of speed and tangent. Basic rules of derivation. Derivation of elementary functions. Derivative of a function. Higher order derivatives. L'Hospital's Rule. Mean value theorem. Application of a derivation – extrema, function flow. Differential linear approximation. Taylor series. Real functions of several variables. Partial derivatives. Extrema of functions of several variables. Definition of primitive function. Indefinite integral. Review of basic indefinite integrals. Methods of integration – directly, substitution, partial integration. Integrals of rational functions. Area problem. Definite integral. Newton-Leibniz formula. Applications: Volume and area of rotating body; Length of the arc of a curve; Not a real integral. Definition of differential equations. Differential equations with separate variables. First order linear differential | | | Primitive function and formula. Applications Differential equations equations with constant and the second prime in the | Measurement of the state | nt and date by of data be intervaled intervaled and functions. Partion. High lule. Functions with seemts. s. Basic of data bullar estimation. | ata collection. Represent. al. Testing of statistical elation coefficient, regresent convergence. Determingence. Calculating the ection image. Composition of interruption. As the corder derivatives. A estions of several variables are methods of integrate variables, first conterms of probability. Representation of frequestion, confidence intervals. | hypothes
ession line
ation of li
sum of co
on of func
symptote.
pplication
les. Partia
ration. De
of the arc
order linea | es, statistical test, error e, least squares method mes and accumulation. onvergent series. Applications. Periodicity. Exponent of a derivation. Extremal derivatives. Extremal derivatives. Extremal finite integral. Newtoncof a curve). | s. d. ation of nential and a. Flow and Leibniz d order | | |---|---|--|--|--|--|--|--|--| | 2.6. Type of instruction | lectures seminars and workshops exercises online in entirety mixed e-learning field work | | independent study
multimedia and the internet
laboratory
work with the mentor
(other) | | In s
in t
exa | 2.7. Comments: In seminars students actively participate in the elaboration of appropriate examples and solve mathematical tasks. | | | | 2.8. Student responsibilities | | | • | | | | | | | 2.9. Screening of student's work (specify the proportion of ECTS credits for | Class attendance | 1.5 | | Research | | Practical training | | | | | Experimental work | | | Report | | | | | | | Essay | | | Seminar essay | 1.5 | (Otherdescribe) | | | | each activity) | Tests | | | Oral exam | | (Other—describe) | | | | | Written exam | 4.5 | | Project | | (Other—describe) | | | | 2.10. Grading and evaluation of student work over the course of instruction and at a final exam | Two partial exams durin | - I | or writte | | of the sem | | | | | 2.11. Required literature (available at the library and via other media) | Title | | | |---|---|--|--| | | D. Bakić. Mathematics for biologists, http://web.math.hr/~bakic/teach.html | | | | | P. Javor; Introduction to mathematical analysis, Školska knjiga, Zagreb | | | | | B. Petz: Basic statistical methods for non-mathematicians. 3rd revised edition. Jastrebarsko: Naklada Slap; 1997 | | | | 2.12. Optional literature | B. P. Demidovič: Assignments and solved examples of mathematical analysis for technical faculties, Croatia knjiga, Zagreb | | | | 2.13. Methods of monitoring quality that ensure acquisition of exit competences | Learning objectives are validated by written exams and during seminars. | | |